La misura del momento magnetico anomalo del muone svela l’esistenza di una possibile nuova forza della natura

Un nuova ricerca trainata dai ricercatori della sezione INFN di Cagliari svela l’esistenza di una possibile nuova forza della natura nella misura del momento magnetico anomalo del muone effettuata dalla collaborazione Muon g-2 al Fermilab.

Rappresentazione schematica dei contributi addizionali del bosone Z oscuro ai diagrammi del momento magnetico anomalo del muone e della violazione di parità nel cesio atomico (immagine con cortesia degli autori).

Che in natura ci siano quattro forze fondamentali ci sembra un dato di fatto. Gravità, forza nucleare forte, forza elettrica e forza debole sono i capisaldi su cui i fisici costruiscono le teorie e gli esperimenti per indagare come è fatto il nostro universo. Eppure, la natura non smette mai di sorprenderci, e mette costantemente alla prova le nostre convinzioni.

Esiste una proprietà delle particelle, denominata “momento magnetico”, che è associata alle caratteristiche intrinseche dei costituenti infinitesimi della materia (si pensi alle particelle cariche come a delle trottole che a causa della rotazione generano un campo magnetico, a cui si può associare, appunto, un momento magnetico). Tale proprietà è stata predetta negli anni ’20 del secolo scorso, e i fisici hanno passato gli ultimi 90 anni a migliorare le misure per via di una discrepanza tra il valore predetto dalla teoria e quello trovato sperimentalmente.

Sembra che alcune particelle come i muoni, sfuggano alle leggi della meccanica quantistica e si comportino in maniera differente rispetto agli elettroni, ad esempio, particelle facenti parte della stessa famiglia (i leptoni). Si parla dunque di momento magnetico anomalo del muone, in virtù del fatto che la misura di questa quantità sembra essere in contrasto con le predizioni della meccanica quantistica. Quando le discrepanze sono significative, è legittimo pensare che esistano nuove leggi fondamentali che regolano i fenomeni naturali osservati, con annesse nuove particelle mediatrici della forza che si esercita durante l’interazione tra i costituenti fondamentali della materia. Tali particelle non sono previste dal modello standard – il vocabolario con il quale costruiamo il linguaggio della materia – ed è dunque necessario indagare a fondo nei meandri della teoria per ottenere una spiegazione convincente delle anomalie misurate dagli esperimenti.

Un nuovo lavoro di ricerca a firma della collaborazione tra i ricercatori Matteo Cadeddu (INFN di Cagliari), Francesca Dordei (INFN Cagliari), Nicola Cargioli (Università di Cagliari e INFN Cagliari), Carlo Giunti (INFN Torino) e Emmanuele Picciau (Università di Cagliari e INFN Cagliari), svela che la nuova misura del momento magnetico anomalo del muone effettuata dalla collaborazione “Muon g-2” al Fermilab, unitamente alle determinazioni della cosiddetta carica debole degli atomi di cesio e dei protoni, è compatibile con l’esistenza di un nuovo bosone mediatore, chiamato bosone Z oscuro, di una forza simile a quella elettrodebole. Il nuovo bosone interagisce con le particelle cariche elettricamente come il fotone e con la carica debole come il più noto bosone Z, ma in entrambi i casi l’interazione risulta decisamente più piccola rispetto a quella del modello standard delle particelle elementari.

Secondo gli autori, che vedranno presto pubblicato il lavoro nella rivista Physical Review D Letter [1], la discrepanza pari a 4.2 deviazioni standard tra la predizione teorica [2] e la nuova misura [3] della quantità nota con il nome di “momento magnetico anomalo del muone”, ha rafforzato la necessità di estendere il modello standard delle particelle elementari. Infatti questa discrepanza può essere spiegata invocando l’esistenza di nuovi mediatori molto pesanti e fortemente interagenti con le particelle note, oppure attraverso nuovi mediatori leggeri e poco interagenti con il nostro mondo [4].

In questa seconda categoria, il cosiddetto fotone oscuro, una versione pesante del più noto fotone, ha goduto di una popolarità crescente negli ultimi decenni che però è scemata negli ultimi anni a causa dei susseguenti vincoli sperimentali che hanno ridotto lo spazio dei parametri necessario affinché tale bosone rappresenti la spiegazione ultima per il momento magnetico anomalo del muone [5]. Tuttavia se il fotone oscuro si comportasse un po’ più similmente ad un’altra particella del modello standard, il bosone massivo Z, allora non solo darebbe luogo a nuovi fenomeni da esplorare sperimentalmente, ma inoltre aiuterebbe ad evadere alcuni dei vincoli sperimentali appena menzionati [6].

Gli autori hanno derivato dei limiti sul modello teorico del bosone Z oscuro combinando le informazioni sperimentali sul momento magnetico anomalo del muone [3], una rideterminazione di quello dell’elettrone [7], insieme alle misure sulla carica debole dei protoni [8] e del cesio [9] che sono sensibili agli effetti di violazione di parità. La misura sul cesio è stata poi rivisitata, traducendo la recentissima misura del raggio nucleare dei neutroni del piombo ad opera della collaborazione PREX [10] in una misura del raggio nucleare dei neutroni del cesio. L’analisi combinata suggerisce l’esistenza di un bosone Z oscuro con una massa di circa 50 MeV/c2 (100 volte più massivo di un elettrone) e con un’interazione elettromagnetica circa 500 volte meno intensa di quella del fotone. Questo nuovo mediatore causerebbe un’interessante modifica del valore a basse energie del cosiddetto angolo di Weinberg [5, 11], un parametro fondamentale della teoria elettrodebole del modello standard. Misure più precise di questo parametro sono quindi fondamentali per questa ricerca.

Variazione dell’angolo di Weinberg in presenza di un bosone Z oscuro leggero (immagine con cortesia degli autori). 

A questo scopo, il futuro sembra roseo in quando due esperimenti, P2 [12] e MOLLER [13], si accingeranno a misurare la carica debole del protone e dell’elettrone. Questo, assieme agli aggiornamenti previsti sulla predizione teorica e sulla misura sperimentale di g-2 aiuteranno a fare luce su questa affascinante estensione del modello standard, confermando o rigettando la possibile esistenza di nuovi mediatori di forza leggeri.

Referenze

[1] Cadeddu et al., “Muon and electron g-2, proton and cesium weak charges implications on dark Zd models”, In pubblicazione come Lettera sulla rivista Physical Review D, https://arxiv.org/abs/2104.03280.

[2] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rep. 887,1 (2020).

[3] B. Abi et al. (Muon g-2 Collaboration), “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm,” Phys. Rev. Lett. 126, 141801 (2021). Vedi anche http://gallery.media.inaf.it/main.php/v/video/servizi/20210408-muon-g-2.mp4.html.

[4] P. Fayet, U-boson production in e+e− annihilations, ψ and Υ decays, and light dark matter Physical Review D 75, 115017 (2007); H. Davoudiasl, H.S. Lee, and W. J. Marciano “Dark Z implications for parity violation, rare meson decays, and Higgs physics,” Phys. Rev. D 85, 115019 (2012).

[5] J. P. Lees et al. (BaBar Collaboration), “Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar,”  Phys. Rev. Lett. 119, 131804. Vedi anche,”tace il lato oscuro della forza (elettromagnetica)”, https://www.media.inaf.it/2017/11/09/fotoni-oscuri-babar/.

[6] H. Davoudiasl, H.S. Lee, and W. J. Marciano, “Muon Anomaly and Dark Parity Violation,” Phys. Rev. Lett. 109, 031802 (2012) and Phys. Rev. D 92, 055005 (2015).

[7] L. Morel et al., “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature 588, 61 (2020).

[8] D. Androic et al. (Qweak), “Precision measurement of the weak charge of the proton” Nature 557, 207 (2018).

[9] P. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020);  C. S. Wood et al, Science 275, 1759 (1997), J. Guena, M. Lintz, and M. A. Bouchiat, Phys. Rev. A 71, 042108 (2005). M. Cadeddu and F. Dordei, “Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron rms radius measurement from COHERENT,” Phys. Rev. D 99, 033010 (2019).

[10] D. Adhikari et al. (PREX Collaboration), “Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering”, Phys. Rev. Lett. 126, 172502 (2021); Vedi anche Misurata la pelle di neutroni, https://www.media.inaf.it/2021/04/29/guscio-neutroni-piombo/

[11] J. Erler and  M. J. Ramsey-Musolf, “Weak mixing at low energies,” Phys. Rev. D 72 073003 (2005); J. Erler and R. Ferro.Hernández, “Weak mixing angle in the Thomson limit,” JHEP 03, 196 (2018).

[12] D. Becker et al., “The P2 experiment,” Eur. Phys. J. A 54, 208 (2018).

[13] J. Benesch et al, “The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using Møller Scattering,” arXiv:1411.4088.