Progetto Aria

Il progetto, inaugurato nel Settembre del 2018, ha come obiettivo la costruzione di una colonna di distillazione per la produzione di isotopi stabili che trovano utilità in diversi ambiti di ricerca e applicazione. In particolare, uno di questi componenti, l’Argon-40, permetterà lo sviluppo di un’innovativa tecnica per la ricerca della materia oscura presso i Laboratori Nazionali del Gran Sasso dell’INFN nell’esperimento DarkSide

Quasi un secolo di osservazioni astronomiche hanno mostrato che la materia ordinaria e visibile costituisce solo una piccola frazione dell’universo. Esso risulta invece formato per la maggior parte da una componente di materia non visibile, detta materia oscura, e da una componente misteriosa di energia, detta energia oscura

La materia oscura costituisce circa il 25% del contenuto del nostro universo e la prova indiretta della sua esistenza è legata all’attrazione gravitazionale che essa esercita sulle stelle all’interno delle galassie o sulla sua influenza nella dinamica (gravitazionale) tra le galassie stesse. 
La peculiarità di questa misteriosa forma di materia è la sua invisibilità ai nostri telescopi, in quanto non emette luce (“oscura” ndr). Tutto ciò rende complicata la sua rivelazione diretta

Tutti gli esperimenti per la rivelazione diretta della materia oscura cercano di rivelare gli urti delle particelle di materia oscura sui nuclei del materiale-bersaglio del rivelatore.  
È in questa fase che entra in gioco il progetto ARIA che ha come obbiettivo quello di ottenere l’Argon-40 in forma estremamente pura, elemento chimico particolarmente stabile usato come materiale-bersaglio nell’esperimento DarkSide-20k. 

Nuraxi Figus: un sito ideale

L’infrastruttura per la produzione dell’Argon e degli altri elementi consisterà in una torre criogenica di distillazione alta 350 metri, che sarà installata nel Pozzo 1 dell’area di Seruci, Gonnesa (Carbonia).
La torre sarà costituita da 30 moduli collaudati al CERN, e poi trasportati nei cantieri di Nuraxi Figus.

Il primo prototipo, alto circa 26 metri, è già stato assemblato ed è entrato in funzione nell’estate del 2019. I moduli, assemblati in superficie per i primi test verranno successivamente installati all’interno del pozzo 1.

L’altezza e il diametro dei pozzi, la loro configurazione, con accessi multipli e sistemi di sicurezza integrati e, soprattutto, la disponibilità di una strada camionabile dalla superficie fino alla profondità di 500 metri, rappresentano condizioni ideali per l’installazione in sicurezza di un impianto che avrà dimensioni uniche al mondo.


Colonna di distillazione attualmente in funzione a Seruci (SU).

Distillare l’Argon, si può!

La distillazione criogenica è il metodo più efficace per la produzione di isotopi stabili. In particolare, l’obbiettivo è quello di ottenere la purificazione dell’Argon-40, inizialmente prodotto dall’impianto Urania, in Colorado, USA, e trasportato in Sardegna per la sua ulteriore lavorazione. 

L’Argon è un componente gassoso presente nell’atmosfera e costituisce circa l’1% del suo volume totale. Quando i raggi cosmici colpiscono gli atomi di Argon nell’atmosfera, vengono prodotti vari isotopi e in varie concentrazioni (ricordiamo che gli isotopi di un elemento chimico sono atomi dello stesso elemento che differiscono solo per il numero di neutroni nel loro nucleo). In particolare, tra questi, viene prodotto l’Argon-39.
Quest ultimo, a differenza dell’Argon-40 che è stabile, decade attraverso processi radioattivi con tempi di dimezzamento dell’ordine del centinaio di anni. È presente solo in tracce nell’atmosfera (meno di un decimo di milionesimo di milionesimo del volume totale dell’atmosfera) e nell’aria che respiriamo.

La radioattività naturale di questo isotopo, che non rappresenta alcun pericolo per la salute dell’uomo, diventa però un problema negli esperimenti per la ricerca della materia oscura, dove si cerca di eliminare ogni fattore che possa inficiare le misure. In particolare nell’esperimento DarkSide, si cercano collisioni rare tra particelle che costituiscono la materia oscura e i nuclei degli atomi dell’Argon-40. LArgon-40 viene infatti utilizzato per la sua grande stabilità come mezzo per le collisioni e diventa necessario ottenerlo in grandi quantità e al massimo della purezza attraverso processi di distillazione, in modo tale da eliminare qualsiasi contaminazione derivata da ulteriori particelle dovute, ad esempio, ai decadimenti dell’Argon-39.

La sfida tecnologica del progetto è perciò quella di realizzare la più alta colonna di distillazione criogenica al mondo capare di purificare l’Argon-40 come richiesto dalle specifiche della collaborazione DarkSide-20k, nonché attuare una produzione massiva di isotopi stabili che trovano applicazioni dalla medicina, alla ricerca fondamentale nel campo della fisica delle particelle. 

Il predecessore di DarkSide-20k, il rivelatore DarkSide-50 installato ai Laboratori Nazionali del Gran Sasso.

DarkSide e la ricerca di materia oscura ai Laboratori INFN del Gran Sasso

I Laboratori del Gran Sasso sono all’avanguardia mondiale nella ricerca diretta della materia oscura: vi si svolgono, infatti, vari esperimenti, basati su diverse tecnologie, che hanno tutti come obiettivo quello di rivelare gli urti delle particelle di materia oscura sui nuclei del materiale-bersaglio del rivelatore.  
In particolare, il rivelatore DarkSide si basa sull’utilizzo dell’Argon-40 come mezzo di interazione: è costituito da una camera a proiezione temporale (Time Projection Chamber, TPC) bifasica, ad Argon liquido e gassoso. 
I risultati di un rivelatore prototipo in operazione presso i Laboratori sin dal 2013 hanno già raggiunto la sensibilità migliore al mondo per la ricerca di particelle di materia oscura di bassa massa. 

Il prossimo rivelatore, DarkSide-20k, è stato pensato per realizzare il programma più ambizioso di ricerca e scoperta della materia oscura. Entrerà in operazione nel 2022, e richiederà l’utilizzo di 120 tonnellate di argon processate dall’impianto ARIA. Quindi, il progetto ARIA svolge un ruolo fondamentale nella strategia di possibile scoperta della materia oscura tramite rivelatori ad Argon. L’unicità e le prospettive del progetto hanno permesso di riunire scienziati provenienti da tutto il mondo per formare un’unica collaborazione internazionale che raccoglie tutti i ricercatori che hanno finora sviluppato rivelatori ad argon per la materia oscura: è la Global Argon Dark Matter Collaboration, il cui primo passo è il programma DarkSide ai Laboratori Nazionali del Gran Sasso.

Il progetto ARIA e le sue svariate applicazioni

Come sempre accade nella ricerca, dalla realizzazione di esperimenti per la comprensione dei fenomeni che ci circondano derivano svariate ricadute tecnologiche per applicazioni in diversi ambiti.
Tra queste, il progetto ARIA consentirà di realizzare studi pilota per la produzione degli isotopi stabili 76Ge, 82Se, e 136Xe, di interesse per i programmi di ricerca sul neutrino svolti sempre ai Laboratori INFN del Gran Sasso.

Inoltre, ARIA con la collaborazione di INFN, Princeton, Università di Cagliari e Carbosulcis  permetterà la sperimentazione e lo sviluppo della nuova tecnologia per la successiva produzione su larga scala di isotopi stabili di interesse commerciale, come 13C, 15N, e 18O, che trovano impiego per esempio in medicina e hanno un mercato internazionale di grande rilievo.

Le miniere di carbone: una preziosa risorsa per la produzione della spirulina

Spirulina è il nome di una biomassa essiccata che si ricava dalla raccolta della cosiddetta “alga spirulina” (Arthrospira platensis). Negli ultimi anni la spirulina ha acquisito molta importanza come integratore e additivo alimentare. Inoltre può essere utilizzata anche come ingrediente complementare nei mangimi per l’acquacoltura.

La spirulina è coltivata commercialmente in grandi canali d’acqua all’aperto, tuttavia tali culture sono soggette alle fluttuazioni giornaliere della temperatura dell’acqua, che dipendono dalla posizione geografica, dalla stagione e dalla strategia di gestione. La temperatura costante, le condizioni alcaline elevate e l’irradiazione luminosa elevata sono i principali fattori ambientali che influenzano la produttività e la composizione della biomassa. Per questi motivi, è stata progettata e costruita un’ampia varietà di fotobioreattori che utilizza l’acqua geotermica pompata da miniere di carbone per riscaldare una cultura di spirulina al valore ottimale. Uno dei principali vantaggi di questo sistema di coltura è il miglior profilo di temperatura della cultura durante il giorno e durante l’anno che consente di prolungare il periodo di produzione.